Step-by-Step Solution to Selected Problems in SIGNALS & SYSTEMS (Problems 12, 18 and 44)

Problem 1. Consider a continuous-time system with input x(t) and output y(t). The inputoutput relationship for this system is

$$y(t) = \begin{cases} x(t) - x(-t) & x(t) \ge x(-t) \\ x(-t) & x(t) < x(-t) \end{cases}.$$

For the continuous-time signal x(t) shown in Fig. 1, determine the output of the system.

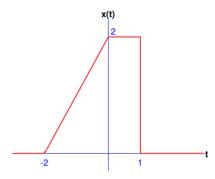


Figure 1: Problem 1.

Solution.

First we sketch both x(t) and x(-t) signals on a figure.

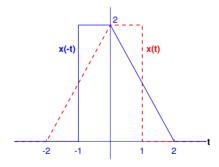


Figure 2: Problem 1, x(t) and x(-t).

Then we decompose signal y(t) to following partitions:

1. t < -2

 \Rightarrow According to the figure, x(t) = x(-t) = 0, so y(t) = 0.

- $2. -2 \le t < -1$
 - \Rightarrow According to the figure, x(t) > x(-t), so y(t) = x(t) x(-t).
- 3. $-1 \le t < 0$
 - \Rightarrow According to the figure, x(t) < x(-t), so y(t) = x(-t).
- 4. $0 \le t < 1$
 - \Rightarrow According to the figure, x(t) > x(-t), so y(t) = x(t) x(-t).
- 5. $1 \le t < 2$
 - \Rightarrow According to the figure, x(t) < x(-t), so y(t) = x(-t).
- 6. $t \ge 2$
 - \Rightarrow According to the figure, x(t) = x(-t) = 0, so y(t) = 0.

Now, according to the above description, we sketch the output:

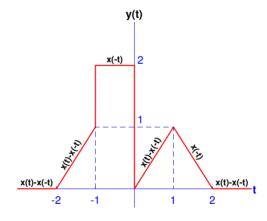
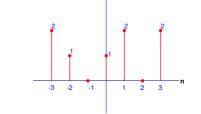


Figure 3: Problem 1, output y(t).

Problem 2. A discrete-time signal x[n] is shown in the following figure. Sketch and label each of the following signals.

(a)
$$y[n] = x[-2n+1]$$

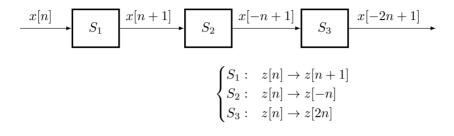


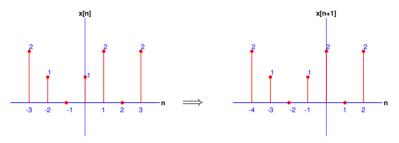
(b)
$$y[n] = x_2[n+4]$$

Solution.

(a) y[n] = x[-2n+1].

For the systems below, if the input is z[n], we have indicated the output and based on that, we can track the changes of x[n]:





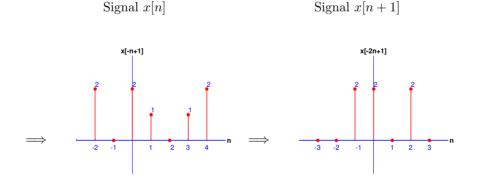


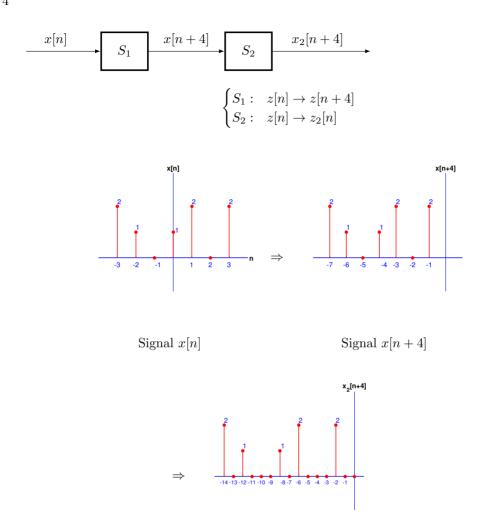
Figure 9: Problem 2 - Part (a).

Signal x[-n+1]

(b) $y[n] = x_2[n+4]$.

For the systems below, if the input is z[n], we have indicated the output and based on that, we can track the changes of x[n]:

Signal y[n]



Signal y[n]

Figure 13: Problem 2 - Part (b).

Problem 3. Consider the following linear time-invariant system.

- (a) The response of this system to signal $x_1(t)$ in Fig. 17 (a) is signal $y_1(t)$ illustrated in Fig. 17 (b). Determine and sketch carefully the response of the system to the input $x_2(t)$ depicted in Fig. 17 (c).
- (b) Find the impulse response h(t) of this system and then work out Part (a) again.

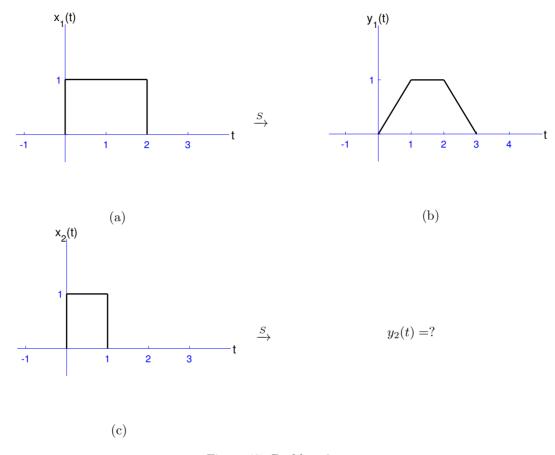


Figure 17: Problem 3.

Solution.

(a) To solve this part, we take the following two steps:

Step 1. First we should write $x_2(t)$ based on $x_1(t)$ as follows (using linear and time-invariant operators):

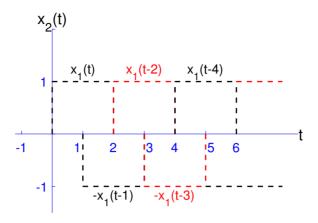


Figure 18: Problem 3: Finding $x_2(t)$ based on $x_1(t)$.

$$x_2(t) = x_1(t) - x_1(t-1) + x_1(t-2) - x_1(t-3) + x_1(t-4) - \cdots$$
 (0.1)

Step 2. Since the system is LTI, a relationship that is established between the inputs, also holds between the outputs. From (0.1), we obtain output $y_2(t)$ as follows (see Fig. 21):

$$y_2(t) = y_1(t) - y_1(t-1) + y_1(t-2) - y_1(t-3) + y_1(t-4) - \cdots$$

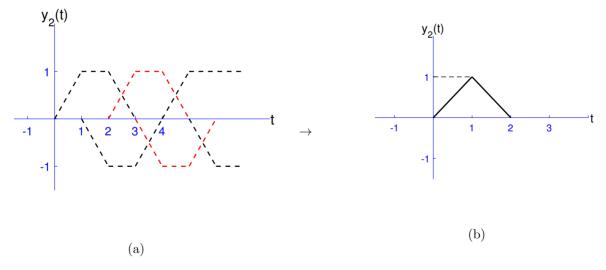


Figure 21: Problem 3: (a) Signal $y_2(t)$ based on $y_1(t)$; (b) Output $y_2(t)$.

(b) First we should find the impulse response h(t) of this system using $x_1(t)$ and $y_1(t)$. By plotting the derivative of $y_1(t)$ in Fig. 22, we can see that

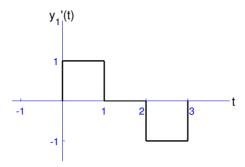


Figure 22: Problem 3: The derivative of $y_1(t)$.

$$y_1'(t) = x_1(t) - x_1(t-1). (0.2)$$

Now based on the discussion in part e of Section ??, we claim that (0.2) holds for any arbitrary input / output, i.e.,

$$y'(t) = x(t) - x(t-1). (0.3)$$

By substituting $x(t) = \delta(t)$ into (0.3), we obtain the derivative of the impulse response h(t) of this system follows:

$$h'(t) = \delta(t) - \delta(t - 1),$$

so

$$h(t) = \int_{-\infty}^{t} h'(\tau)d\tau = \int_{-\infty}^{t} (\delta(\tau) - \delta(\tau - 1))d\tau$$
$$= u(t) - u(t - 1).$$

Using the convolution of signals $x_2(t)$ and h(t) and convolution properties, we evaluate and plot $y_2(t)$ as follows:

$$y_2(t) = h(t) * x_2(t) = h'(t) * \int_{-\infty}^t x_2(\tau) d\tau$$
$$= (\delta(t) - \delta(t-1)) * (r(t) - r(t-1))$$
$$= r(t) - r(t-1) - r(t-1) + r(t-2)$$
$$= r(t) - 2r(t-1) + r(t-2),$$

where r(t) is the unit ramp function. As expected, $y_2(t)$ is the same as Part (a).

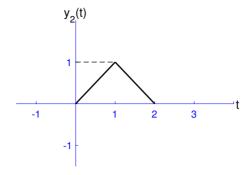


Figure 23: Problem 3: The output $y_2(t)$.